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. 4;>In an earlier éaper, Duffin studied a model for the transverse vibrations
of a string of n beads. This note looks at the same question in a more
general setting. It establishes the existence of special solutions
corresponding to high frequency oscillations which are "positive® in the

coordinate system chosen as well as other "non-positive"” solutions.

AMS(MOS) Subject Classifications: 34B15, 47H15

Key Words: transverse vibrations of a string, continua of positive solutions,
bifurcation,

Work Unit Number 1 (Applied Analysis)

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041 and by
the National Science Foundation under Grant No. MCS-B110556. Reproduction in
whole or in part for any purpose of the United States Government is permitted.

e e
. . e . .
. K .
. . e
. .
‘et .
. o %
, L. -
D . e N

. e e . R . .. NN TN *

PR A VR R R B Y P PSP . -
. ottt . PN R R IO TUR N P L T T - P T e L e A Y - e
IR RO P S e T et et . e At T e e T e e e e e B I A VR . =T e N
AR Wl RPN AL Al IS AP P PR R R P O LAl ~ e -




SIGNIFICANCE AND EXPLANATION

In an earlier paper, Duffin modelled the transverse vibration of a string
of n beads by the system of ordinary differential equations

mix'j'_ = fl(xi_.l + xi) + fi.”(xi + xi+1), 1< i< n

where the positive coordinate directions are as indicated on page 1. He
established the existence of families of solutions all components of which are
initially positive (in this coordinate system) with zero velocity, and after a
time interval T all components have zero amplitude. We prove the existence
of such highly oscillatory solutions in a more general setting and also study

the existence of nonpositive solutions.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A NOTE ON A THEOREM OF R. DUFFIN
Paul H. Rabinowitz
§1. Introduction
In {1], R. Duffin studied the transverse vibrations of a string of n beads

stretched between two fixed end points. Assuming that longitudinal motion wasg constrained
by channels and that tension only depends on the extension of the string segment, the
motion was modelled by the system of equations
(1.1) mtx; = ft(xi~1 + xi) + fi+1(xi + xi+1), 1<i<n
where the positive coordinate directions are as indicated in the figure below,

X, =0 3 x and my > 0 1is the mass of the ith bead. Let P denote the cone of

0 n+1’

positive vectors in R*, i.e. P = [x = (x1,...,xn)|xi >0, 1< i< n}. Thus in the above
coordinate system, if at time t, the beads lie in P, x4(t) lies above the line, £,
joining the endpoints of the string, x, 1lies below £, etc. In particular adjacent
points have displacements of opposite sign relative to £. Duffin used an elegant
argunent based on the Brouwer Fixed Point Theorem to prove

Theorem 1.2. Suppose the functions £, are Lipschitz continuous and there is a

constant h > 0 such that

(1.3) -ti(.) > hs , 1<4i1i<n+ 1

Sponsored by the United States Army under Contract No. DAAG29~80-C-0041 and by the
National Science Foundation under Grant No. MCS-8110556. Reproduction in whole or in jpa:t
is permitted for any purpose of the United States Government.
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for all s ? 0. Let &  R' be a surface bounding a starshaped neighborhood of 0. Then
there is an x‘r € s M P and T' > 0 such that the initial value problem for (1.1) with
x(0) = x"  and x'{3) = 4 has a solution x(t) such that x(T') = 0.

Stated more infoimally, on any such set of initial data, S N P, there is a point
x" and correspondiing " > 0 such that if the string starts from rest at x', then at
time T', all of the beads lie on %. Duffin also observed that if f;(s) 1is odd in s,

1< i <€n, (1.1) poszesses a ar” periodic sciution obtained from the above one by

appropriate reflecticns atout 0 and T*. Duffin called the type of solution obtained in
Theorem 1.2 an "cppesitional mode of vibration®. For linear f;, this mode has the
highest frequency.

During a recent visit to Carnegie-Mellon University, Duffin posed to us the question
of whether there exist snlutiuvns of the type obtained above which start on S outside
of P and after scme time interval all lie on %. In §3 we will give some partial
answers to this question. In §2, some sharper versions of Theorem 1.2 will be obtained
for a more general class of equations than (1.1). In particular we will prove that (1.1)
possesses an unbounded connected set of initial data in P of the type given by Theorem

1.2,

§2. Continua of positive solutions

Let x = {X4,.. ,%,) and let glx) = (g1(x),-..,gn(x)) satisfy

(g9) g ec (R", R")
and
(gy) g: #.10b » pr{o0} .

Note that the g deiirea by (1.1) and (1.3) satisfies (g,). Consider the system of

ordinary differentia. oquetions:

{2.1) m‘xT + gi(X) =0 1< ic<n

where m > 0. In this section more general versions of Theorem 1.2 will be established
1

for (2.1). By replacing g,(x) by 9i(x)mi— , we can assume m; = 1 and study

(2.2) x" ¢ g(xr) = 0 .
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We will seek solutions of (2.2) which pass through the origin at say t =0

second value of t, say t =T, have zero

a solution and y(t) = x(T - t), then y(0)
0, and y"(t) = x"(T ~ t) = -g(x(T - ¢t)) =
type Duffin found. Our main result will be
data in P for which there exist solutions

precisely, note that the time T at which

1

the time variable, t * T t,

independent variable, (2.2) becomes

(2.3) x" + T2g(x) = 0
and
(2.4) x(0) = 0 = x"(1V)

Thus we seek T € (0,®) and x

we can make the new time interval 1.

and at a

velocity, i.e. x'(T) = 0. If x(t) is such

= x(T), y'(0) = x'(T) =0, y(T) = x(0) =

-g(y(t)). Therefore y 1is a solution of the

the existence of an unbounded connected set of
of Duffin type for (2.2) To state this more

x' = 0 is not known a priori. By rescaling

still calling t the

in the class of functions satisfying (2.4) such that

Using (2.4) to integrate (2.3) shows

(T,x) satisfies (2.3).
1
2

(2.5) x'(t) = T° [ g(x(t))dar

t
and

2 &1 2

(2.6) x{t) = T [ (] g{x(1))an)ds = T kx

0 s
Solutions of (2.2) of the desired type will

(2.6).

Let E denote the set of x € c([0,1],

(2.6) and (g4) imply K: E * E and K

P =1y eEly,(v) >0,

Then P is a closed cone in E

replace

€€ R by € = (€,...,€). Now set

t
(2.7) (ex)e) = [ (
0

and (2.6) and (g;) show K: P » P.

K by a new operator with a stronger positivity property. Let

be obtained from the equivalent formulation

R n] satisfying (2.4). The form of K (in

is compact. Set

te (0,1, 1< i<n}.

It is convenient to

E > 0 and define

1

[ (gix(1)) + g)dr)ds
s
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{vye Ply,(0) >0, and y (t) >0, te (0,11, 1< icn}.

Then (2.7) shows K_: P * 72 and is compact.
Consider the operator equation

(2.8) x = uKex

By a solution of (2.8) we mean a pair (u,x) € Rx E satisfying (2.8). Our goal is to
obtain information about solutions of (2.8) (with p > 0) for € > 0 and use it to
deduce results about solutions of (2.6). There is a useful theorem about operator
equations of the form (2.8) that can be exploited for this purpose. Let

R = {r e Rlr > 0}.
Proposition 2.9: Let E be a real Banach space and K: £ * £ be compact. Suppose there
exists a closed cone P in E such that K: P+ P. Then the operator equation

x = pyK x has a component = i.e. a maximal closed connected set -— of solutions, c,
such that (0,0) € C and C is unbounded in R' x P.
Proof: Proposition 2.9 probably exists in the literature but we do not know a
reference. Here is a brief proof. Consider K restricted to P. By the Dugundji
Extension Theorem (2], there exists an extension k of K to [ which is compact and
whose range lies in P. consider the equation

(2.10) X = | k x

By Theorem 3.2 of [3], (2.10) has a component ( of solutions meeting (0,0) and unbounded

N -
in R* x E. sSince the range of K lies in P, CcCc R x P. But in P, K = K 80 the

proposition obtains.
Applying Proposition 2.9 to our K _ and P and recalling that K: P e 2, we see

that (2.8) possesses a component of solutions, Ce' meeting (0,0) and unbounded in

R' x 0. It is now an easy exercise to let € + 0 and use C( and the compactness of
v

K to pass to a limit and get a component of solutions ( of (2.6) which i1s unbounded 11

R x P, However it may be the case that q(0) = 0 and if so, (u,0) 18 a trivial

-4~
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solution of (2.6) for all u € R+- Then C possibly just consists of these trivial
gsolutions. We will show that even if g(0) = 0, (2.6) has lots of nontrivial solutions.
Towards that end, define a mapping of Rx E to X' by P (4,x) = x(1). The form
of (2.8) shows if (u,x) e Ce and U = 0, then x = 0. Therefore 0 € P'Ce. Since
C ¢ is a connected set and P, 1is continuous, P1 Ce is a connected subset of R"
which lies in P. Letting € * 0 will then yield:
Theorem 2.11: ILet g satisfy (g9y) and (g;). Then there exists an unbounded connected
set U C P such that 0 € 0 and for any n € D\{0}, there exists a solution x of
(2.2) and T(n) > 0 such that x(0) = 0, x(T) = y, and x'(T) = O.
Two preliminary results are needed to obtain Theorem 2.11.
Leama 2.12: For each € > 0, set XC = {x e ll(u,x) e Ce}. Then xe is unbounded and

connected.

Proof: By Proposition 2.9, and above remarks, C € is unbounded and connected in

2" * E. Therefore XE, its projection on E 1is connected. If xe is bounded, there

is a sequence of points (un,xn) € Cc such that Uy * @ and x, 1is bounded in E. The
equation satisfied by (u-,xn) and (gy) yleld
(t)

(2.13) xn: - It(!
0 s

! t ¢ € 2
(g, (x (t1trar)as > [ e(1 - s)as = - = (1 - 5)° |
m 9 3

t
0
for each component xg,; of X,. BSetting t = 1 and letting m + = shows

(2.14) 0>

wim

a contradiction. Therefore xc is unbounded in E.

lesma 2.15: Por each € > 0, P‘C: is unbounded in P.

L] 1
Proot: Eguation (2.13) shows that tf (u,x) € Cc' then xi(t) < 0 in (0,1), xi(t) > G
tn (L,1), and x,(t) > 0 n (0,1) for 1< t € m. Therefore each component of x(resp.

') achieves its maximum in (0,1) at t = 1 (resp. t = 0). Consequently

VAT [x¢1)] = max  |xqt)| = Axt
te(o0,1) L

nenow Ly Lemme 2.V2, P, ( is unbounded and clearly lies in P.

(3
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Proof of Theorem 2.11: A standard theorem from point set topology [4, Chapter 1]

guarantees the existence of [ provided that for any neighborhood ( of 0 in R P,
there is a & € 30, u(E) > 0, and a solution x of (2.3) - (2.4) with T2 =y and

x(1) = &. Thus choose any such set ( and a decreasing sequence em + 0. By Lemma 2.15

and previous remarks, for each m, P1Cs is an unbounded connected subset of P which

m
contains 0. Hence there is a (um,xm) € Ce with xm(1) e 30, Since @ is bounded
m
in P and the maximum of Ixm(t)l occurs at t = 1, (x,) 1is a bounded sequence in
L
L . Suppose for the moment that the um's are also bounded. Then differentiating

+ 2
(2.13) shows that (um,xm) is bounded in R X C . Consequently using (2.13) again we

+ 2 : .
can asume (um,xm) converges in R X C to some (u,x), a solution of (2.6) with

x e P and x(1) € 30. Clearly u > 0 for otherwise x = 0 contrary to x(1) € 30.
Thus the theorem is proved once we establish that (um) is a bounded sequence.
If (um) is not bounded, we can assume byt ® as m + ®, Consider (xp(1) C 0.
Therefore there is an & > 0 and a subsequence of x, such that for at least one
component of xp, say Xpje we have xmj(I) > a along the subsequence. Since xmj(t)

1
is a concave function, xmj(t) ’ % for all t € DE 1]+ By the boundedness of ( again,

L

L

there is a constant M > 0 such that I&ml < M independently of m. Hypothesis (92)

implies there is a B > 0 such that
n
lq(g)il1 z % lg 61| > 8

for all § such that g < Cj <M and 0 < €i <M, i # 3. Therefore by (2.13),

-t -




AR A T A i il S aube et ot ot Sues Nt mean: Smer

lxm(1)|z1 11

> [ (] latxgttn|, at)as
0 s 1

(2.17) m
m

o1 .
? IZU |<J(xm(1))|z at)ds > T

o Y 1
Letting m * ® in (2.17) leads to

(2.18) [ ]

’

-blw

a contradiction. Therefore Uo is a bounded sequence and Theorem 2.11 is proved.

For each £ e v\{o}, there is a 4 > 0 and x € P such that (u,x}) 1is a solution
of (2.6) with x(1) = £. It is natural to ask whether there is a component, (, of
solution of (2.6) in R* x P such that P;C = D. We do not believe such a simple
statement holds without more assumptions However in this direction we have
Corollary 2.19: For each £ € D\{0}, there exists an unbounded connected set AE of

+

solutions of (2.6) in R x P and a point (u,x) € A such that P, (u,x) = E.
3 1

Proof: Let £ e . By construction, £ = lim Em where Em = P1(um,xm) and
+ 2 +
(um,xm) e Ce « Moreover (um.xm) converges in R' X C° to (u,x) € R X P and

P,(u.x) = §. Consider any bounded open set f in R* x P which contains (u,x). Then

(ug,x;) € R for large m. Since C, is unboundeq, (. N N # ¢ for all large m,
m m

It follows as in the proof of Theorem 2.1%1 that 3{1 contains a solution of (2.6) and

there exists AE as stated above.

If g(0) = 0, (2.6) possesses the family of trivial solutions {(u,0)|u € R+} in
R x P, 1f g(0) # 0, we have
Corollary 2 20: 1If g(0) # 0, (2.6) possesses an unbounded component of nontrivial
solutions, C, in R"x p which meets (0,0) and satisfies P,C is unbounded in P.

+
Proof: Llet § be any bounded open neighborhood of (0,0) in R x P, The argument of

-7-




Corollary 2.19 or Theorem 2.11 shows that 92 N C, # ¢ for all m. Hence as earlier
m

there is an unbounded component ( of solutions of (2.6) in R+ X P which meets (0,0).
Equation (2.6) shows if (u,x) € (C and p # 0, then x(t) >0 for t > 0 so
C\{(0,0)} consists of nontrivial solutions. Lastly (2.17) shows P,( cannot be
bounded.
Remark 2.21: If S denotes the set of nontrivial solutions of (2.6) in R" x P, as we
approach infinity along S, x(1) * 0 or x(1) * «, for otherwise the estimate (2.17)
shows the corresponding u's must be bounded. Then (2.6) implies the x's are also
bounded, a contradiction.

To study the behavior of S more closely, in particular near x = 0 or « requires

more information about g near 0 and infinity. We will give a simple example of such

an analysis.

By (2.6),
t 1
x{1) g{x(1))
(2.22) =u [ (f at)ds
Ix(1)|m1 0 s |x(1)|ﬁ'1

Suppose that

(2.23) lgcer], >alg]®
1

(Note that this holds for a = 1 for the g obtained from (1.1) via (1.3)). Then (2.22)
- (2.23) show there is a constant a4y such that

(2.24) 15 ua, |x(m]®!?
1 2

If a> 1, p+0 as x(1) + » while if a =1, u < 6;1- Since (2.24) also holds for

(2.8) uniformly in € > 0, we see if a =1, Ca and therefore any set obtained from it

by taking limits lies in [O,a:1] x P and contains (0,0).
In (1}, Duffin conjectured that if S 1is as in Theorem 1.2, then there exists

nes, T(n) >0, and a solution x(t) of (1.1) such that x(0) = 0, x'(0) = n,

-5 -
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x'(T) = 0, and x(t) € P for all t € [0,T]. One cannot expect this to occur in the
generality of (2.6). For example consider

(2.25) x" + V'(x) =0

where V € CZ(P,R) and g = V' satisfies (g;). Suppose further that

V(x) + 0 uniformly as |x| * ®. (E.g. take n = 1 and V(x) = -(x + 1™ Y. since

(2.25) is a Hamiltonian system
1 2 -
(2.26) 3 [x*(£)|“ + V(x(t)) £ constant

independent of t for any solution x of (2.25). Let T = {n e P] there is T > ©
and x, a solution of (2.1) with x(0) = 0, x'(0) =n, x'(t) =0, and

x(t) e P for all t e [O,T]}. We claim T is bounded in P. 1Indeed let n € T with
corresponding x(t}. By (2.26),

1.2

(2.27) -% |x(0)]2 + v(x(0)) = 302 4+ (o) = vix(m)

If T were unbounded, (2.27) shows V(P) must also be unbounded, contrary to our
assumption on V at <,

Next we will show that Duffin’s conjecture holds in his setting.
Theorem 2.28: Suppose g satisfies (gq), (g3) and (2.23) with a = 1. Then T
contains an unbounded component containing 0.
Proof. These hypotheses, Theorem 2.11, and the remarks following (2.21) show (2.6)

possesses a component of solutions, (C, wunbounded in [O,a,-1] x P with (0,0) € (. For

1 -1
any (u,x) € C, the change of time scale t + T = j /zt, x(t) = y(1) = x{u /ZT}

1
transforms solutions of (2.3) - (2.4) to solutions of (2.2) with y(0) =0 = y'(y /é).
Consider

- 1/2

T= {y'(0) = u” 2x'(0)|(u,x) € C}

A priori, y'(0) 1is not defined for (0,0) € (. But if we approach (0,0) along {, by

(2.5)

-1 1, 1
W 2x000) = w2 [ g(x(t))ds + 0 .

0
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- 1 -
0 €T . It follows that the map (u,x} *+ /éx'(O), C + T is continuous.

sGo

~

Therefore T is connected. Since (u,x) € C implies € [0,a;1l while {x'(0)} is

unbounded via (2.5) and the unboundedness of {X(O)} in E, T must be unbounded and the

Theorem is proved.
p

§3.

Some remarks on other solutions of (2.2)

Another question Duffin posed in [1] is whether (1.1) possesses solutions of the type
found earlier other than "positive" ones. Some partial answers will be given in this
section.

To begin suppose g satisfies

ME + of]E

(gq) g(g) = ) as &£ + 0

where M is an n x n matrix and M: P *+ P. Associated with (2.3) - (2.4) is a linear

eigenvalue problem

y" + pzMy

(3.1) 0, 0 <t <1

i

(3.2) y(0) =0 = y' (1)

P 1
An eigenfunction of (3.1) - (3.2) must have the form y(t) = (sin{k - E)Wt)c where

c € RP,

k € N, and satisfies

2 2

c = p Mc.

(3.3) (k = %)2 bl

1f wz in a simple (or odd multiplicity) eigenvalue of (3.1) - (3.2), a global

bifurcation theorem from [3] provides the existence of nontrivial solutions of (2.2)
. . 2

bifurcating from (p°,0).

Rather than work in this generality, we specialize to Duffin's case where

fj{s) —ajs + no(s) as s * 0 in R, 1€ j € n+ 1 where aj > h > 0. Then (3.1)
bhecomes
" ﬂi a,
{ F: T m e + - +
(3.4) Yy Wi Y Tt vy
i i
1 &« i &« n and =0 = Since m a. >0, M is a tridiagonal matrix with

Yo ° 3

positive entries along its main and two neighboring diagonals. A computation shows that

the determioants ot the principle minors ot M are all positive. Consequently M is an

=10~
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x'(T) = 0, and x(t) e P for all t € [0,T]. One cannot expect this to occur in the

generality of {(2.6). For example consider j
{2.25) X" + V'(x) =0
where V € CZ(P,R) and g = V' satisfies (g,). Suppose further that i
Vi(x) + 0 untformly as |x| * ®. (E.g. take n =1 and V(x) = -(x + 1H~Y). since
(2.25) is a Hamiltonian system
(2.26) -;— [x*(£)]% + V(x(t)) = constant j
independent of t for any solution x of (2.25). Let T = {n e PI there is T > © )
and x, a solution of (2.1) with x{0) = 0, x'(0) = n, x'(t) = 0, and R
x{t) e P for all t € IO,T)}. We claim T 4is bounded in P. Indeed let n € T with
corresponding x(t). By (2.26), -
(2.27) 3 I @12 + vix@)) = 2 0% + v(0) = vix(m) ‘
If T were unbounded, (2.27) shows V(P) must also be unbounded, contrary to our -
agsumption on V at «. E.
s (]
Next we will show that Duffin‘'s conjecture holds in his setting. -
Theorem 2.28: Suppose g satisfies (gy), (gp) and (2.23) with a = 1. Then T
contains an unbounded component containing 0. i:
Proof. These hypotheses, Theorem 2.11, and the remarks following (2.21) show (2.6) i:

possesses a component of solutions, C, unbounded in [O,a1-1) x P with (0,0) € C. For
1 -1
any (u,x) € C, the change of time scale t > T = /2,:' x(t) = y(1) = x(u /21)

1
transforms solutions of (..3) - (2.4) to solutions of (2.2) with y(0) = 0 = y'(u /é)-

Consider
- -1/
T={y'(0) =u" 2x'(0)](u,x) e C}

A priori, y'(0) 1is not defined for (0,0) € C. But i{f we approach (0,0) along (, by

(2.5)

-1 1 3
W 2x0(0) = u 2 [ glx(t))as + 0 .
0
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so 0€7T . It follows that the map (u,x) * u 2x'(0), C+T is continuous.
Therefore T is connected. Since (u,x) € C implies u € (0,8;1] while {x'(0)} is
unbounded via (2.5) and the unboundedness of {X(O)} in E, T must be unbounded and the

Theorem is proved.

§3. Some remarks on other solutions of (2.2)

Another question Duffin posed in [1] is whether (1.1) possesses solutions of the type
found earlier other than "positive" ones. Some partial answers will be given in this
section.

To begin suppose g satisfies
(gy) glE) = ME + ol|E]) as £ >0
where M is an n X n matrix and M: P * P. Associated with (2.3) - (2.4) is a linear

eigenvalue problem

(3.1) y" +p2My =0, 0 <t <1

(3.2) y(0) = 0 = y' (1)

An eigenfunction of (3.1) - (3.2) must have the form y(t) = (sin(k - %Jﬂt)c where
k €N, ¢ € R, and satisfies

(3.3) k - 5% 7% = o2me.

1f 92 in a simple (or odd multiplicity) eigenvalue of (3.1) - (3.2), a global

bifurcation theorem from {3] provides the existence of nontrivial solutions of (2.2)
. . 2
bifurcating from (p~,0).

Rather than work in this generality, we specialize to Duffin's case where

fj(s) = —ajs +o(s) as s+ 0 in R, 1€ j < n+ 1 where aj > h> 0. Then (3.1)
becomes
a a
" i i+
R pp—— - +
(3.4) ' . (y,_q * Y N ty, Yieq) ¢

1< i <n and Yo = 0= Yne1® Since m; o, aj >0, M is a tridiagonal matrix with
positive entries along its main and two neighboring diagonals. A computation shows that

the determinants of the principle minors of M are all positive. Consequently M 1is an
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oscillation matrix [5) and its eigenvalues are all positive and simple:
v1 > cee D> vn > 0 and any eignvector cj corresponding to vj has j - 1 sign
changes. (This means if cj = (cjt""'cjn)' the sequence of components changes sign

exactly j-1 times). In particular c, has no sign changes and we can assume c, €P.

The eigenvalues of (3.1) - (3.2) are then

(k__%)zwz
(3.5) | 1<1<s, ken}
v i
i
. 1,2 -1 . 1,2 -1
These eigenvalues may not be simple; possibly (k - 5) Vi = (j - 3) vp for some

choice of indices. However for most choices of aj, my they will be simple. 1In any

event we have
1

Theorem 3. 6: Let fi € C and satisfy (1.3), 1< i < n+ 1, Suppose 92 is an

eigenvalue of (3.1) - (3.2) of odd multiplicity. Then (1.1) possesses a component E of
nontrivial solutions in R' X E which contains (92.0) and either is unbounded or meets
(rz,O) for some other eigenvalue 2 of (3.1) - (3.2).

Proof. The system (1.1) is eigenvalent to the compact operator equation (2.6) where

Kx = Lx + o( x) as x +* 0 and

t 1
(x)(t) = [ (f mx(t)dr)ds .
0 s

Since 02 is of odd multiplicity the conclusion follows immediately from the global

bifurcation theorem of (3].

- -1_2
Remark 3.7: Since vj > v, for 3 > 1, (3.5) shows u, (uV1) n is the smallest

eigenvalue of (3.1) - (3.2) and is simple. A standard bifurcation theorem then says that

-

near (u',O), C 1is a curve of the form u(s) = uy o+ o(1), x(s) = sy, *+ o(|s|) for s

near 0. Since c, €P, y, = (8in 3% ) e, € P. 1In fact Y, € Q which is an open set in

the c! topology. Then for s > 0 and small, (u(s), x(8)) 1lies in R x 0, Under a
stronger assumption on g as defined by (1.1), this curve extends to an unbounded

connected set of solutions of (1.1) in R x Q.

-11-
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Corollary 3.8: Under the hypotheses of Theorem 3.6, suppose g: P\{O} into the interior
of P. Then (1.1) contains a component of solutions C* unbounded in l+ x 0 and which
meets (u1.0).

Proof: By Remark 3.7 and Theorem 3.6, we need only show that 6 Fl(R+ x Q) has the
desired property. Results from (3] or (7] show that the curve mentioned in Remark 3.7
either is part of an unbounded connected set of solutions of (1.1) in R x 0 or it meets
a point (u,x) € R x 9Q other than (u,.O)- If the latter case occurs, there is a
sequence (um,xm) e E F\(R+ x Q) such that (um,xm) + {(u,x). This implies some

component z of x satisfies 2'(0) = 0 or z(t) =0 for some t € {(0,1). But (2.5) -
(2.6) and our additional assumption on g show this is only possible if z =0 and x =
0. Then (um,xm) + (u,0) where u 1lies in the set defined by (3.5). Writing (2.6) as

X Kx
m m
=u —

hx m fix I
m m

(3.9)

. -1 .
and letting m + ®, we see xmlxmI converges to a solution of

(3.10) Yy = uly

where y € P, Myl =1, ¢ Hye We claim this is impossible. Indeed y has the form

- -2
y =1L ap(si.n(kp 5 )ﬂt)cip

appears at most once, and if €, = Cqs kp > 1.
P

where the Gps are scalers, each <4

*
Let c denote an eigenvalue of M*, the adjoint M corresponding to v

1 We can

1
* * . * *
assume c1 € P. Let y1 = (sin E-t) c1. Since c1 is orthogonal to S if k # 1,

*
taking the inner product of (3.9) with Y, yields
1 *
(3.11) J y*y,, dt=0
0
-*
But Y, € ) and MRyl = 1 implies the left hand side of (3.11) must be positive. Thus

- +
CN(R x Q) is unbounded and the proof is complete.

Remark 2.12: As was noted earlier, the eigenvalues (3.5) of (3.1} - (3.2) are simple in

general and then

the argument of Remark 3.7 and (3] or (7] yive curves and continua of
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golutions of (1.1) emanating from the corresponding bifurcation points. Globally the

argument of Corollary 3.8 cannot be used to keep these solution branches from meeting each

other. However we see that in general there are many distinct small amplitude solutions
of (1.1) which do not lie in R x P. In particular the small amplitude solutions
associated with the eigenvalues (4\):’)-1!2 will have the same “nodal " ghapes as the
eigenvectors c;, 1 < j < n.

Variational methods can also be used to obtain information about small solutions of
(1.1) irrespective of multiplicity considerations for the eigenvalues of (3.1) ~ (3.2).
brief sketch of how this can be done will be given. Let

8
Fi(s) = [ £ (2)az , 1€ 1 ¢ n+
0

and let

gyx) = =€, (x, o+ x,) = £.(x + x..4)

for 1< 1< n where x5 = x,,.q = 0. Note that if
n+1
Vix) == } Filx,_,*x),
i=1
then %%— (x) = gi(X)' Consider the variational problem: Find critical points of
N :

2
{3.13) I(x) = [ v(x(t)at
0

subject to the constraint

1J'2
(3.14) -
29

} mi(x;(t))zdt - r?

i=1 i

where x lies in the class of functions
{x(t) € w'"%([0,2),8")|x(0) =0 and x(1 + 8) = x(1 -5), se (0,1}

The left hand side of (3.15) can be taken as the square of the norm in this space. The

Euler equations satisfied by any smooth critical point of this problem are

(3.16) mx " + ug (x) =0, 1<41i<n

i.e. (2.3) where u" is the corresponding Lagrange multiplier. The choice of function

space shows x also satisfies (2.4).

-13-
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A bifurcation theorem due to BShme (8] or Marino (9] can be applied to the above
si1tuation and shows that each eigenvalue of (3.1) - (3.2) is a bifurcation point for
(1.1}. However it does not give us information, for a multiple eigenvalue, about the
~hape of the corresponding solution of (1.1).

Remark 3.17: Results of van Groesen [10] (based on work of Ekeland and Lasry [11] show
that if

HoGx ) = 3 bom [ )% v v
and V 1is even, convex, and satisfies other technical geometrical conditions, then for

each c > 0, the energy surface H = ¢ contains at least n distinct solutions of (1.1)

of the type we seek. No information is obtained however about their shape.
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